Students creating VR worlds for maths

Learning mathematics through creativity is a not an approach we often associate with junior high school classrooms. In this post, Jessica Simons, Math teacher and co-researcher on the VR School Study, explains how she went about designing curriculum that allowed her Year 9 extension mathematics class to use 360-degree virtual reality to demonstrate their depth of understanding of linear and non linear graphs.

Jessica developed a unit of work which scaffolded students towards growing their mathematical knowledge and applying this to the environment of their school. Students were asked to produce imaginative 360-degree virtual worlds that could be used to teach their peers about graphs. Working in small groups, students scouted locations around their school where graphs might be represented and then they planned and storyboarded their ideas to produce original immersive adventures in mathematics to share with others. The cover image for this blog post is of an initial brainstorm from one group on the VR task.

The unit of work can be found here.

The video below is of Jessica explaining how she developed the curriculum, bought a creative lens to mathematics teaching, and the value-add of VR to student learning.

This post bought to you by real live educators A/Prof Erica Southgate and Jessica Simons (Assistant Head of Mathematics, Trinity College, Adelaide).

Curriculum to empower student VR design on sustainability

This post provides an excellent example on how to design curriculum that integrates the use of 360-degree VR content creation for authentic research and problem-solving in the design and technology subject area. Ella Camporeale, teacher, and co-researcher on the VR School Study, discusses how she went about producing a unit of work for her Year 9 students that allowed them to use VR to create their own virtual world on the topic of sustainability at school.

The unit of work scaffolded students towards understanding the creative potential of VR and how it might be used to allow students to demonstrate deep understanding of digital design and content knowledge of sustainability based on research into the school’s sustainability practice. Students needed to investigate the issue of sustainability at school by engaging with key stakeholders to collect and represent data in their virtual worlds. They were required to produce a range of original content including 360-degree scenes of the school and different media (text, photos, video, gifs, sound files) to embed into the scenes that would tell a story about the broader issue of sustainability and their school’s approach to it. There was also the opportunity to integrate game mechanics to increase user engagement in the VR product.

The unit of work can be found here.

In the video below Ella Camporeale and Erica Southgate discuss curriculum design that integrates VR for deeper learning:

~This post bought to you by real humans, Associate Professor Erica Southgate and Ella Camporeale.

~The platform used in the project was VRTY.

~This research has been funded by the Association of Independent Schools of South Australia (AISSA).

~Cover image from Pexel by Polina Tankilevitch.

Designing curriculum for creative learning about Biomes with VR

Teacher Toni Maddock from Southern Montessori School (Adelaide) set about the task of designing an integrated unit of work (science and geography) on biomes and food security that would allow her middle school students to demonstrate both content mastery and develop communication and creativity skills by using 360-degree VR via the VRTY platform.

There are few available examples of how teachers go about designing curriculum to scaffold student VR content creation. Pedagogically, the unit of work involved a combination of direct instruction and collaborative and discovery-based learning activities. There was a staged approach, with students, in the first instance, being supplied with existing 360-degree scenes of biomes from around the world which they then needed to enhance by doing research on the biome and adding certain facts and media to their 360 scene. This was followed by the class skilling up with the 360 camera and moving to a more complex task involving research on, and an excursion to, a local biome. Informed by their research, students took their own 360-degree base scenes of the biome while on the excursion. They also conducted experiments to generate data to include in their 360-degree virtual biome world, and produced other media (such as text, sound files, photos and videos) on information relevant to the biome and local food security issues. Best of all, and a key feature of VR, students got the opportunity through a school expo to easily immerse their peers, family and community members, in the the educative virtual world they created, making the task genuinely authentic.

The unit of work can be found here.

Through careful curriculum planning, Toni provided rich, scaffolded tasks that leveraged the properties of VR to develop her students higher order thinking and provided them with a unique way express their scientific and geographic knowledge content mastery in a creative way. This was very different to how she would usually teach the topic of biomes. Toni talks a bit about the curriculum planning process in the video below:

This post bought to you by actual humans – Associate Professor Erica Southgate and Toni Maddock.

This project has been funded by the Association of Independent Schools of South Australia (AISSA).

Cover image of rainforest by Jahoo Closeau from Pexel.

Pedagogical strategies for introducing 360° VR in class

Year 7 students at Trinity College are set the task of creating a vision of the school of the future using 360° VR as the medium of communication; these VR visions used to inform conversations in the school community from a student perspective. Before they begin the project, the class does an initial lesson to become familiar with the hardware and is guided through two brainstorming activities by teachers Jessica Simons and Steve Grant. These brainstorming activities are intended to get students thinking about safety in VR and have them identify engaging design feature of a 360° VR experience.

Students are asked to work in their small groups to use their desks which as whiteboards to write down a set of safety pointers for using VR. The teachers then guide a whole class discussion to come up with a set of safety guidelines that are synthesised by the teacher on a whiteboard. Here are some of the student’s safety ideas:

TRinity safety 2

Trinity safety 1

Trinity safety 4

This activity was followed by students experiencing a 360° tour using the headset and then having a whole class discussion about what made the tour engaging and what might have been improved. Here is a video except is from the whole group discussion on 360° design features guided by their teachers: 

These pedagogical strategies for first lessons with VR promote student agency and responsibility for safety and prime their imaginations and critical thinking skills through evaluation a user experience of the technology.

P.S. In case you want to put a face to the teachers in the video, Steve and Jessica are pictured below after the delivery of this lesson. To find out more about them go to the Team page of the VR School website.

Southern Montessori School joins the VR School Study

Southern Montessori Middle School is excited to launch our VR project. Southern Montessori’s VR project is part of an integrated Humanities and Science unit based on the inquiry question: ‘How can we secure food for our future?’ Students will be using VR to create their own biome, identify problems arising from human impact, and find solutions to these problems. Students will be challenged to demonstrate their learning in a creative and engaging manner.

Southern Montessori Middle School is a mixed age year 7-9 community located in the southern suburbs of Adelaide with a strong focus on academics. We combine our thirty six Year 7, 8 and 9 students together and work in small, ability-based groups following the Australian Curriculum but presented with Montessori principles. We are committed to innovative approaches to learning that are not only relevant and engaging, but also prepare our students for their future.

Teachers Siobhan Curran and Toni Maddock have developed this unit of work and series of activities designed for students to not only think critically and creatively about the content, but also think creatively about how VR technology can be used as a tool to assist their learning. Having not used VR in the past, students and teachers alike are excited to take part in this research and to see what the students can achieve.

This post bought to you by teacher and co-researcher Toni Maddock

The metaverse

Ever since Facebook announced its vision for their metaverse on 28 October 2021, including the company’s name change to Meta, there has been a buzz about what it might mean for the future of the internet and our digital (and real) lives.  

Of course, this announcement was set against the recent warnings from a reputable whistle-blower about the harm the social media company is doing including to children and young people through its algorithms that shape user beliefs and behaviour, and inadequate moderation of harmful content.  

This blog post unpacks the idea of the metaverse, taking into account Facebook’s vision but also extending beyond it, to understand its history and highlight some implications for teachers.

Where does the term metaverse come from?

English teachers – You Are Up!

The term metaverse was coined by Neal Stephenson in his 1992 cyber punk novel Snow Crash. It referred to a computer generated universe.

40651883._SY475_

Snow Crash is a rollicking sci fi read that has fired-up the imagination of those interested in possible technology futures with its fascinating portrayal of the persistent immersive 3D digital world of the metaverse that can be jacked into through a personal headset or public booths that produce a lower grade, glitchy avatar. In fact, the novel popularised the word avatar. It also highlighted the dangers of corporate and government control of knowledge and its infrastructures, dreamt up a devastating hybrid DNA and digital virus, and featured deadly semi-autonomous weapons called ‘rat things’.

An aside: For an earlier version of the metaverse, but this one was called the ‘matrix’, see William Gibson’s (1984) Neuromancer, a dazzling tale about a VR universe inhabited by mastermind AIs that influenced the Matrix film trilogy (soon to be quadrilogy).

What will the metaverse be?

The idea of the metaverse extends beyond Facebook’s (proprietary?) influence and has been described as a spatialised interoperable version of the internet. At the moment no one really knows what the metaverse might be like although there are current smart glasses, persistent VR spaces and gaming sites that provide a window into social, commercial, communication and creative aspects of it. Users will probably connect with the persistent interfaces, spaces and layers of the metaverse using a VR headset or smart glasses or on a screen (or with some type of yet-to-be-invented hardware that can integrate aspects of these). There is also a future vision, and investment into research, for direct human brain-computer interface. The metaverse will be populated with people in avatar form and by AI-powered virtual characters in human and other forms.

Here is a description of what the metaverse might be:

“The metaverse is the idea of a shared digital universe in the cloud created by merging virtual spaces that are physically persistent together with augmented reality (AR) layered over the real world. The metaverse is singular because the concept includes the sum of all virtual and online worlds along with all AR layers enhancing the physical world… Besides games and hangouts, it will include social media platforms, workplace tools, investing resources, online shops and much more. You’ll be able to immerse yourself completely in this spatial internet using virtual reality (VR) technology or just interact with bits of it that are layered over your physical space via AR. Instead of a profile picture, you’ll be represented by a complete digital avatar or persona. You’ll be able to meet up with your friends’ digital personas and wander around visiting virtual places and attending virtual events.” https://history-computer.com/metaverse-the-complete-guide/

For those interested in how Facebook’s metaverse might be designed in stages see this excellent article from Avi Bar-Zeev, veteran developer of and commentator on all things eXtended Reality (XR).

What does the metaverse mean for teachers and students?

1. Be curious but don’t believe the hype: There is a fair bit of publicity around the metaverse, and this will infiltrate the EdTech space – just remember that the metaverse isn’t here yet (at least in a scaled-up interoperable way), and some suggest it may never arrive. So, it’s good to be intrigued without buying into the hype.

2. Keep up with current research on immersive learning: We are still in the early days of building the evidence base for the effectiveness of immersive technologies for learning using headset-mediated VR and augmented reality experienced through glasses or via screen, especially in schools.  Results are promising but ongoing rigorous research is needed so that we can confidently embed immersive learning into school classrooms in ways that make pedagogical sense and align with curriculum across subject areas. Asking questions about the evidence base and keeping up with the research on immersive learning is vital as knowledge about this will allow us to ask the right educational questions as the metaverse evolves.  

3. Get interested in the (dry) but important areas of privacy law, digital legislation and regulation, and AI ethics: The idea of the metaverse only amplifies existing concerns regarding the automated harvesting, sharing and use of data without user consent including biometric data which is about and of the user body (facial recognition, pupil dilation, gaze and movement tracking etc.) and which can be highly identifying. There are many different forms of biometric data and plenty of biometric harvesting tools available and so we need to watch this space carefully. Automated nudging of behaviour and the affective moods of users will be diffused through the metaverse as current visions see this as a place to advertise and sell products to us as well as collect our personal data in ways which will be highly embodied and emotional. The inclusion of cameras in smart glasses and VR headsets adds another layer of complexity to maintenance of privacy. The Internet of Things will seamlessly fuse with the Internet of Bodies creating legal, ethical and social dilemmas for all of us, personally and professionally. Children and young people will be differently impacted at each stage of their physical, cognitive, moral, and social development. The teaching profession needs to ask who will regulate the metaverse, define its standards, and build and control its infrastructure and content, as this should inform decision making on procurement of technology for schools. No teacher wants to bring unethical technology into the classroom and so we need to start understanding and applying ethical frameworks now and into the future as the metaverse merges with aspects of our everyday lives in work, leisure and learning.

4. Empower children and young people to have a say in what the metaverse should be: Look for places in the curriculum where students can investigate and use the technologies related to the metaverse as well as explore public and industry discourse about its ethical and social implications. Such opportunities should expand the boundaries of digital literacy education to take in civics and citizenship, the environmental impacts of technology, ideas about human-machine relationships, and re-formed conceptions of learning, creativity and identity in the new machine age. Some industry doyens, such as the CEO of the child-targeted Roblox gaming platform which has 42 million daily users logins, suggest that children are already in a proto-metaverse and that one day such platforms will be pivotal to a metaverse providing everything from learning, shopping and business communication tools. Schooling systems rarely recognise the digital leisure life of children and youth, and yet industry is watching and factoring this into their plans for the metaverse. It is important that we as educators facilitate children’s critical engagement and agency in this space so that they are not viewed just as consumers or as data points. The voices and visions of children and young people should be integral to shaping a metaverse which upholds human rights including the rights of child.

The post bought to you by A/Prof Erica Southgate who is looking forward to having a snazzy Star Trek Borg avatar in the metaverse.

P.S. For those interested, here is the full Facebook Meta announcement.

Snow Crash novel cover featured in this post is from https://www.amazon.com/Snow-Crash-Neal-Stephenson/dp/0553380958

Student 360° content creation for learner agency

How do children go about planning the content and experiences of virtual environments that they are creating to demonstrate learning mastery? How do they think about creating virtual environments for their peers to learn in? What are the special learning outcomes related to this? Not much is known about these areas. 

The VR School Study is interested in students as virtual environment content creators. As part of the research, we collected data on the approaches students take when creating their own virtual worlds to demonstrate mastery of learning. This blog reports on interesting findings from the Athelstone School Innovative Languages project where primary (elementary) aged children are building their own 360° virtual tours to demonstrate mastery of the Italian language.

The students are using VRTY, a platform that allows them to plan and create their virtual worlds without needed to code. The platform provides easy-to-use tools with built in tutorials and a fun guide so that students can independently learn to use the platform after a couple of formal training sessions. Previous blog posts describe the VRTY platform and how it is leveraged through the teacher’s curriculum design. The first step, after training, is for students to research and plan their virtual tour. The planning involves storyboarding through VRTY. Students need to:

  1. Locate and choose the 360° photo scenes of Italy that best fit a tour narrative.
  2. Locate cultural and historical images that could be embedded in each scene.
  3. Create their own content to embed in the scene such as text and sound file that draw on the vocabulary mandated and reflect their research on cultural and historical information about Italy.
  4. Design a narrative through storyboarding in VRTY that reflects the story they want to tell and consider whether the tour experience should be linear or non-linear (the image below is of one student’s storyboard).
  5. Create each 360° scene and embed their content into it in an engaging way and place teleporter hotspots in the scenes so those experiencing the tour can move between scenes.  

Fourteen students from a mixed ability class chose to be part of the project with 11 virtual worlds in total created – some students chose to work in pairs. Equal numbers of boys and girls participated. On average student virtual worlds comprised six 360° scenes. Overall, students created 187 pieces of content to embed in scenes in their virtual worlds, including 50 sound files and 137 information markers. The cover image to this blog post is a screen shot from the student tour ‘Journey around Rome’ which shows student created information and sound markers embedded into the scene.

Interestingly, 7 of the 11 worlds were structured according to a non-linear narrative. Non-linear narratives allowed those experiencing the tour to move back and forth between all or most 360° scenes. Students who developed a non-linear narrative storyboard explained that this allowed have the freedom to go back and check out aspects of a scene they might have missed or enjoyed. The image below is of a non-linear narrative storyboard developed in VRTY. The virtual tour was created by a female student who called it ‘Journey around Rome’ and it allowed the traveler to move between a number of historic sites with all sorts of images, text and sound files in English and Italian embedded into them which used the mandated vocabulary and other Italian. Best still the traveler could return to a hotel room and decide which day trip they might take next or they could go back and visit somewhere they had already been.

The storyboard in VRTY for ‘Tour Around Rome’ illustrates the non-linear narrative created by the students with arrow indicating the direction of travel that was possible between 360° scenes.

This sophisticated non-linear narrative approach to constructing a user experience was premised on creating a sense of agency for those experiencing the tour (or other learners). In choosing non-linear narratives some children were tapping into the strength of developing learner agency when designing their virtual worlds. Non-linear narratives were not essential for developing agency but, in many cases, were important to this.

The significance of developing agency in learning cannot be underestimated, as Williams (2017) explains:

“Students with agency develop a self-perception that is based on their abilities as independent thinkers. Our task as educators is not to tell them what to think but to help reveal their thinking by reflecting back to them what we are observing and noticing and naming their acts of problem solving. This feedback builds a metacognitive awareness that reinforces their identities as capable thinkers who are able to construct their own understandings. This mode of learning shifts the locus of power from the teacher to the student, thus setting up students as the experts in their own learning.” (p. 11).

The Athelstone School VR project illustrates how many students themselves understand the significance of agency in creating engaging and efficacious 360° learning environments.

Reference

Williams, P. (2017). Student Agency for Powerful Learning. Knowledge Quest45(4), 8-15.

Researching VR for education

This post provides a snapshot of some of the ways the VR School Study researches the use of VR in schools, with the framework also applicable to other formal educational contexts. VR School is an ongoing multi-site study that employs a mixed-methodology (qualitative and quantitative) approach to research. The study is premised on a multi-perspectival conceptual of education with and in VR. The diagram below outlines some of the key areas that are explored in the research.

Each of these areas prompts a range of questions about virtual reality for education. The table below highlights some of these questions with associated methods for collecting data that might shed light on them.

AREARESEARCHQUESTIONSMETHOD
PedagogyHow can teachers leverage the signature pedagogies of their subject areas/disciplines to ensure deeper learning through VR for their students?
How can teachers leverage the learning affordances of VR for deeper learning?
What are the pedagogical principles or assumptions the are evident in VR applications?
Classroom observation
Teacher reflection
Surveys
CurriculumHow can VR be woven into a unit of work which includes the normal range of conventional learning activities in a curriculum-aligned way?
Can curriculum objectives be adapted to take advantage of the learning affordances of VR?
Classroom observation
Teacher written and verbal reflection
Document (curriculum) analysis
AssessmentHow can VR be used to develop novel, engaging and authentic types of formative and summative assessment?
How can student peer and self-assessment be built into VR projects?
How can VR be used to develop novel, engaging and authentic types of formative and summative assessment?
What are strengths and limitations of conventional assessment types in understanding learning?
Teacher and student written and verbal reflection
Document (curriculum) analysis
Achievement analysis
Student work sample analysis
Student learningHow can students use VR to demonstrate content mastery, collaboration and communication skills, new conceptual understandings, problem-solving skills, metacognition and an academic mindset?
What is the student experience of learning through and in VR?
How can students move beyond the novel effect of new technology to develop deeper learning?
Surveys
Student work sample analysis
Student and teacher written and verbal reflection
Achievement analysis
Student talk and behavioural analysis
Observation
Teacher professional learningWhat is the teacher experience of learning to use an emerging technology in the classroom?
What types of formal professional learning, expert and peer support do teachers require?
How do teachers learn from each other and students during VR projects?
Teacher written and verbal reflection
Observation
Survey
Ethics and safetyWhat are the ethical, legal, safety and child development issues related to using VR in classrooms?Document analysis
Observation and testing
Surveys and experiments (cross-sectional and longitudinal)
Organisational arrangements and cultureWhat are the technical, practical and organisational enablers and barriers to embedding VR in classrooms in a curriculum-aligned way?
What conditions are required for pedagogical risk taking using an emerging technology?
How does the culture of the school support or impede innovation?
Teacher and student written and verbal reflection
Observation
Survey
Document analysis

While these are only some of the questions and approaches to data collection that the VR School study is exploring across primary and secondary schools and in different subject areas, it is worth noting that there is a commitment to participatory research: That is research with teachers and students, not on them. Elevating the knowledges of teachers and students will be key to understanding where VR fits best in education and in scaling up immersive learning in schools.

Cover image from Pexel.

‘Persi in Citta’ unit of work for the Athelstone School VR project

Developing units of work that allow for student VR content creation involves: (a) sequencing and scaffolding learning for curriculum-mandated content and skill acquisition; and, (b) allowing time for students to develop new technology expertise via problem-solving, creative experimentation and collaboration.

In the Athelstone School VR project, primary (elementary) school students use the 360° VRTY platform to create a travel journey that demonstrates Italian language acquisition and knowledge of Italian culture. The learning objectives derive directly from the Australian Curriculum.

Below is the unit of work ‘Persi in Citta’ (Lost in the City), developed for the VR project by Athelstone language teacher Angelica Cardone and Jo Romeo. The unit of work was implemented this term with primary school students in Year 6 (11-12 years of age).

………………………………………………………………………………….

‘Persi in Citta’ (Lost in the City) unit of work

Learning Intention – to use and develop directional language in the VR platform whilst creating different scenes in Italian cities.

Lesson 1

  • Introduce the booklets and go through it as a class (VRTY student handbook)
  • Re – familiarize themselves with the platform and look at where students were in Term 1 in terms of importing 360 degree images, information markers, portal markers and importing pictures etc.
  • Allow time to work on their world.

Lesson 2

  • Students to work on their information markers, limit to at least 4 per picture or scene.
  • Information marker must have information about the landmark they have chosen to use, information must be in English and have the Italian translation.

Lesson 3

  • After information markers have been used and checked by the teacher students to use portal markers so they can move through scenes.
  • Once portal markers have been used to move in and out of scenes directions will need to be written in to allow others to use the world as a new traveller to Italy. E.g. – Excuse me where is the Colosseum? Scusa dov’e` il Colosseo?

Lesson 4

  • Use directional language learnt in lessons and put them in their scenes.
  • Portal markers will need to transport the visitors to the location.

Lesson 5

  • Proposal to use the headsets and phones to view the worlds they have created in the VRTY platform. Proposal to use the 360 camera for producing own images to import into the VRTY platform.

Australian Curriculum Achievement Standards

Communication

  • Informing – Gather information from a range of sources (ACLITC043) and represent information appropriately for different audiences using a variety of modes (ACLITC044).
  • Creating – Create imaginative texts for different audiences such as digital stories using characters, places, ideas and events (ACLITC046)
  • Translating – Create simple bi lingual texts and discuss what translates easily or not (ACLITC048)

Understanding

  • Systems of Language – Use grammatical knowledge to interpret and create meaning in Italian (ACLITU052)
  • Language variation and change – Recognise that language use varies according to the context of situation and culture (ACLITU054)

Success criteria

 YesDeveloping
Can student import a 360 degree image correctly.  
Can student import an information marker and use effectively.  
Student can import a portal marker and use effectively.  
Student can use directional language appropriately to navigate through the scene.  
Was able to work collaboratively in pairs or small groups.  
Used the student handbook effectively for assistance if required.  

In addition to the Languages Curriculum outcomes the unit of work develops the following Level 4 General Capabilities from the Australian Curriculum:

ICT CAPABILITY

Investigating with ICT

  • Locate generate and access data and information: locate, retrieve or generate information using search engines and simple search functions and classify information in meaningful ways

Creating with ICT

  • Generate ideas plans and processes: use ICT effectively to record ideas, represent thinking and plan solutions
  • Generate solutions to challenges and learning area tasks: independently or collaboratively create and modify digital solutions, creative outputs or data representation/transformation for articular audiences and purposes

Communicating with ICT

  • Collaborate share and exchange: select and use appropriate ICT tools safely to share and exchange information and to safely collaborate with others

CRITICAL AND CREATIVE THINKING CAPABILITY

Inquiring – identifying, exploring and organising information and ideas

  • Identify and clarify information and ideas: identify and clarify relevant information and prioritise ideas
  • Organise and process information: analyse, condense and combine relevant information from multiple sources

Generating ideas, possibilities and actions

  • Imagine possibilities and connect ideas: combine ideas in a variety of ways and from a range of sources to create new possibilities

PERSONAL AND SOCIAL CAPABILITY

Self-management

  • Work independently and show initiative: assess the value of working independently, and taking initiative to do so where appropriate
  • Become confident resilient and adaptable: devise strategies and formulate plans to assist in the completion of challenging tasks and the maintenance of personal safety

Social management

  • Communicate effectively: identify and explain factors that influence effective communication in a variety of situations
  • Work collaboratively: contribute to groups and teams, suggesting improvements in methods used for group investigations and projects
  • Make decisions: identify factors that influence decision making and consider the usefulness of these in making their own decisions

Conceptions of VR + signature pedagogies = learning fit

In my recent book, I provide some explanatory frameworks on the pedagogical uses of VR. While much of the public discourse centres around technical differences between types of VR (i.e. the difference between 3 Degree of Freedom [DOF] vs 6 DOF) or whether 360° technology is ‘real’ VR, as an educator I think it is more important to focus on the pedagogical utility of the technology. One way of making pedagogical sense of VR is to conceptualise its different possibilities for learning with explicit connection to the signature pedagogies of disciplines (or school subjects derived from disciplines).

The diagram below (developed for the book) illustrates some key conceptions of VR for learning. VR applications can reflect one or more of these concepts.

When teachers are considering VR they should explore the learning experiences the application offers and how this might fit with the range of instructional strategies commonly used in specific subjects. For example, if you were teaching history you might ask if the software offers a means for transporting students to another place or time because this would fit well with the instructional repertoire usually deployed in the subject area. A core instructional strategy used in a subject is called a ‘signature pedagogy’ (Shulman, 2005). Signature pedagogies are important because they:

implicitly define what counts as knowledge in a field and how things become known…. They define the functions of expertise in a field. (Shulman, 2005, p. 56)

In the case of sparking the imagination through a historical re-creation experience (re-creation being a signature pedagogy of the discipline of history), a time-travel experience would traditionally be facilitated through the instructional use of text, maps, or video. Choosing a time-travel VR experience for history makes good pedagogical sense because it leverages or extends on the signature pedagogy of that particular discipline. Relatedly, this is why VR resonates with the types of place-based pedagogy used in subjects such as geography or in professional training simulations. The technology can be used to take the learner elsewhere and its spatial affordances (properties) fit with the signature pedagogy of geography which is the field trip or professions where situated learning in workplaces (placements) are key (such as clinical health or teacher education).

Let’s look at another example using the diagram. In order to teach science, an educator might want to  provide students with the opportunity to conduct experiments that are too complex or dangerous for a school laboratory – experimentation in labs being a signature pedagogy of the discipline of science. The teacher would therefore investigate if there was a total learning environment in the form of a virtual laboratory available so that experiments could be safely simulated.

A performing arts teacher might find that a virtual studio would be a great addition to the actual studio of the drama classroom because it offered a range of tools for her student to design sets and costumes. VR design studios allow for ease of prototyping (click of the controller for creating, erasing and changing elements) at actual scale and let students easily share design ideas for rapid feedback from the teacher and peers (the book has a case study on how a real teacher did this in a rural school).  In this case, the virtual environment offers tools to support the signature pedagogy of drama teaching which involve facilitating the creative processes through improvisation and iteration.

Finally, some VR applications enable student content creation – this might be through coding (using game engines such as Unreal and Unity for example) or with more accessible ‘no code create’ drag-and-drop software. In this pedagogical conception of VR, students use the technology as a form of immersive media that can tell a learning story. Students create their own worlds and tell their own stories to demonstrate mastery of learning outcomes and to communicate with, and teach, others.

This pedagogical conception of VR as media informs our latest research on using 360° content creation for second language learning at Athelstone primary school. The 360° platform, VRTY, offers ‘no code create’ opportunities for primary school students to create their own ‘surround’ worlds that acts as a foundation to embed other media into (other media includes gaze-activated pop-up text, sound files, photos, videos, gifs and animations). Students are required to demonstrate that they meet learning outcomes, such as oral or written mastery of Italian vocabulary, by creating a 360°world that is enriched with other digital content they have created. Students can link 360° environments together through gaze-activated portals. The many layers of media content creation entail students planning, experimenting, designing, and evaluating the story they want to tell in their virtual worlds. They then share their creations with peers and the teacher for authentic feedback. They are making media-rich narratives to educate others about the Italian language and culture while demonstrating content mastery.

One our key research questions involves understanding how language teachers can leverage their signature pedagogies to take advantage of the learning affordances of 360° media creation in ways that enhance student engagement and learning. Concentrating on the instructional utility of VR in direct relation to the distinctive pedagogies of the subject being taught – its signature pedagogies –  will yield theoretically rich and salient insights for teaching and curriculum design. You are invited to follow our adventure. Stay tuned.

Bought to you by A/Prof Erica Southgate on behalf of the Athelstone School VR School Team

References

Shulman, L. S. (2005). Signature pedagogies in the professions. Daedalus134(3), 52-59.

Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

Blog at WordPress.com.

Up ↑