Conceptions of VR + signature pedagogies = learning fit

In my recent book, I provide some explanatory frameworks on the pedagogical uses of VR. While much of the public discourse centres around technical differences between types of VR (i.e. the difference between 3 Degree of Freedom [DOF] vs 6 DOF) or whether 360° technology is ‘real’ VR, as an educator I think it is more important to focus on the pedagogical utility of the technology. One way of making pedagogical sense of VR is to conceptualise its different possibilities for learning with explicit connection to the signature pedagogies of disciplines (or school subjects derived from disciplines).

The diagram below (developed for the book) illustrates some key conceptions of VR for learning. VR applications can reflect one or more of these concepts.

When teachers are considering VR they should explore the learning experiences the application offers and how this might fit with the range of instructional strategies commonly used in specific subjects. For example, if you were teaching history you might ask if the software offers a means for transporting students to another place or time because this would fit well with the instructional repertoire usually deployed in the subject area. A core instructional strategy used in a subject is called a ‘signature pedagogy’ (Shulman, 2005). Signature pedagogies are important because they:

implicitly define what counts as knowledge in a field and how things become known…. They define the functions of expertise in a field. (Shulman, 2005, p. 56)

In the case of sparking the imagination through a historical re-creation experience (re-creation being a signature pedagogy of the discipline of history), a time-travel experience would traditionally be facilitated through the instructional use of text, maps, or video. Choosing a time-travel VR experience for history makes good pedagogical sense because it leverages or extends on the signature pedagogy of that particular discipline. Relatedly, this is why VR resonates with the types of place-based pedagogy used in subjects such as geography or in professional training simulations. The technology can be used to take the learner elsewhere and its spatial affordances (properties) fit with the signature pedagogy of geography which is the field trip or professions where situated learning in workplaces (placements) are key (such as clinical health or teacher education).

Let’s look at another example using the diagram. In order to teach science, an educator might want to  provide students with the opportunity to conduct experiments that are too complex or dangerous for a school laboratory – experimentation in labs being a signature pedagogy of the discipline of science. The teacher would therefore investigate if there was a total learning environment in the form of a virtual laboratory available so that experiments could be safely simulated.

A performing arts teacher might find that a virtual studio would be a great addition to the actual studio of the drama classroom because it offered a range of tools for her student to design sets and costumes. VR design studios allow for ease of prototyping (click of the controller for creating, erasing and changing elements) at actual scale and let students easily share design ideas for rapid feedback from the teacher and peers (the book has a case study on how a real teacher did this in a rural school).  In this case, the virtual environment offers tools to support the signature pedagogy of drama teaching which involve facilitating the creative processes through improvisation and iteration.

Finally, some VR applications enable student content creation – this might be through coding (using game engines such as Unreal and Unity for example) or with more accessible ‘no code create’ drag-and-drop software. In this pedagogical conception of VR, students use the technology as a form of immersive media that can tell a learning story. Students create their own worlds and tell their own stories to demonstrate mastery of learning outcomes and to communicate with, and teach, others.

This pedagogical conception of VR as media informs our latest research on using 360° content creation for second language learning at Athelstone primary school. The 360° platform, VRTY, offers ‘no code create’ opportunities for primary school students to create their own ‘surround’ worlds that acts as a foundation to embed other media into (other media includes gaze-activated pop-up text, sound files, photos, videos, gifs and animations). Students are required to demonstrate that they meet learning outcomes, such as oral or written mastery of Italian vocabulary, by creating a 360°world that is enriched with other digital content they have created. Students can link 360° environments together through gaze-activated portals. The many layers of media content creation entail students planning, experimenting, designing, and evaluating the story they want to tell in their virtual worlds. They then share their creations with peers and the teacher for authentic feedback. They are making media-rich narratives to educate others about the Italian language and culture while demonstrating content mastery.

One our key research questions involves understanding how language teachers can leverage their signature pedagogies to take advantage of the learning affordances of 360° media creation in ways that enhance student engagement and learning. Concentrating on the instructional utility of VR in direct relation to the distinctive pedagogies of the subject being taught – its signature pedagogies –  will yield theoretically rich and salient insights for teaching and curriculum design. You are invited to follow our adventure. Stay tuned.

Bought to you by A/Prof Erica Southgate on behalf of the Athelstone School VR School Team

References

Shulman, L. S. (2005). Signature pedagogies in the professions. Daedalus134(3), 52-59.

Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

New study on 360° VR for primary school language learning

The VR School Study is in a new partnership with Athelstone School, a South Australian primary (elementary) school. The Athelstone School research will investigate how 360° VR content creation can be used for learning Italian. Funded by the South Australian Department of Education’s Innovative Language Program Grants (ILPG) program, Year 5 and 6 students will use the VRTY platform to create and share their own virtual worlds guided by the Australian curriculum. This action research has already undergone a pilot phase that happened in the second half of 2019 and we are now entering into the first of  several research cycles in order to explore technical challenges, developmental appropriateness of 360° VR, and the efficacy and innovative potential of 360° VR content creation for learning another language.

The teacher co-researchers on the project are language teachers Angelica Cardone (far left behind) and Jo Romeo (left front on top image), and Principal Gyllian Godfrey (back centre) who is also a qualified language teacher.  Gyllian provided this reflection on the project:

“The ILPG has offered the opportunity to test the benefits of VR for students
learning languages at primary level and has also upped-the-ante by making
students the creators of their own content, by developing non-linear language
learning narratives for themselves and their peers.”

In our next blog, the folks from VRTY explain how students can use their platform for content creation and learning.  Stay tuned.

Bought to you by A/Prof Erica Southgate who is taking up a lot of room (right front) in the photo above.

Some cool stuff from the VR Book

This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.

Virtual Reality in school education: Australia leads the way with groundbreaking research

By Erica Southgate

In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).

 I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia.  It became the first research internationally to embed high-end VR in school classrooms.

VR School Study

The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.

An ‘arduous’ adventure in emerging technology

IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.

Space to accommodate VR and safety concerns

Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.

Network and server issues

Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.

Content mastery and creativity through collaboration

Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.

In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.

Brain from up high

One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from  work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.

Inside the brain

At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.

Let’s leave behind the EdTech evangelism

An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.

Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.

This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.

Teleporting away for now

As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.

For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.

Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate

This article was originally published on EduResearch Matters. Read the original article.AARE

NEW book from the VR School Study

Out of three years of co-research with teachers comes the first book (of many I hope) from the VR School Study. The book, Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (2020 Routledge) provides a brand new pedagogical framework with scaffolds for educators on how to use the technology for deeper learning. Case studies from Callaghan College and Dungog High School are included with a focus on metacognition, collaboration and creativity.

Blog SS

Immerse + Imagine with Michelle Brown

Could you tell me about your professional background Michelle?

I studied Multimedia in the early 2000s and began to incorporate technology into my arts practice, I did a lot of computer design work for musicians, bands and venues back then. About this time I also started working and playing in the music industry. I ended up managing one of Australia’s iconic community radio stations, 4ZZZ in Brisbane, so I didn’t have much time to spend on my art, but I did manage to keep producing work occasionally! Being connected to an industry like music gave me a great bunch of opportunities but I decided to leave 4ZZZ in 2016 to concentrate on a career creating art and producing content.

When did you first get interested in VR and why?

In 2016 while I was finishing up my management role I saw some really cool stuff being created with augmented and virtual reality. I started to look into what I needed to get a VR set up and also started producing AR artwork, I already had the animation and illustration skills plus the tech knowledge so it all just kind of fell into place! The biggest barrier for VR is the expense of the equipment however things are getting cheaper with stand-alone headsets like the Quest available, at the time I had to invest in a PC (I was strictly a mac user for a long time!) and a HTC Vive. Some of the artists I saw producing VR artwork include Liz Edwards, a very cool 3D artist, which got me into a VR art app called Tilt Brush, which I’ve used ever since in my workflow, from music videos to large scale installation work.

How do you currently use VR?

I mainly work with some of the VR art apps/programs like Google’s Tilt Brush, Gravity Sketch and some of the animation programs like Tvori. I paint and create environments and worlds in VR that are the base for music videos, installation work and more. Just like a 3D modelling program, many of the VR apps allow you to export 3D creations that can be used in other apps, like Unity, or traditional film editing software like Premiere Pro.

I also teach workshops in using VR and AR in arts practice, so showing ways that you can integrate illustration and animation with mobile apps and teaching people about the art apps I’ve mentioned.

What are your thoughts on VR and the creative process?

For me I love it, it really cuts down on the amount of time I spend hand illustrating or animating. The same with 3D modelling, it would take me possibly 3 times the amount of time to create something in Cinema4D that I can model quickly in VR as it’s more attune to actual sculpting/painting.

I also feel that VR can create more of an impactful experience, when you are in a headset it’s easy to ignore everything else going on and just concentrate on the narrative or user experience, no social media distractions!

What advice would you give teachers and students who are thinking about using VR for creative projects?

Allow a bit of time for all students to have a play in VR, even if you only have one or two headsets! If you are showing students how to use some of the art programs like Tilt Brush, you need to let them have a little time to get comfortable and creative. But also keep in mind taking breaks if you’re in the headset for more than 30 minutes at a time. I also would recommend giving some direction so that students experimenting with VR art have something to focus on rather than just aimlessly painting swirls, for example; get them to paint a favourite animal or cartoon.

What is unique about creating in VR instead of some other medium?

It’s mainly the speed of which I can get an idea out plus the fact it’s in a three dimensional space, it’s just so much quicker for me to produce a visual story. It’s also a way that I can communicate a theme or an idea that links to a social issue that I can address with my installation work, as it allows for more intimacy and less distraction. Being immersed in a 3D environment by yourself in the headset provides a great opportunity to just focus.

Check out Michelle’s VR art and more on her website https://www.thebadlament.com/

MB

Blog at WordPress.com.

Up ↑