Happy 5th birthday to the VR School Study

In late August 2021, the VR School study celebrated 5 years of ground-breaking research. Associate Professor Erica Southgate highlights three key findings from research so far:

Research papers and teaching resources are available on the VR School website under the Resources tab and there is a book for those who are interested:

Teachers reflect on 360° VR for language learning

This post reports on Athelstone School teachers’ views on using VRTY, a 360° content creation platform, for learning Italian with primary (elementary) school students. To catch-up on the research go here and here.

Language teachers Jo Romeo and Angelica Cardone provided extensive reflections in video and written form throughout the study. They noted that most students were engaged in the learning task of creating their virtual tour of Italy and incorporate the mandated Italian directional language and greetings. Teachers were particularly pleased to see less technologically confident students gain skills by collaborating with their peers either in pairs to create one virtual world or through peer-to-peer interaction more generally.

Teacher written reflections suggested that throughout the unit of work students were developing the Deeper Learning capacities of effective communication and problem solving through self-directed learning and an academic mindset featuring persistence when confronted with a range of difficulties:

“(The project) has enabled aspects of learning as they (students) have designed and created their own (virtual) worlds without too much teacher input. They have explored the platform on their own and used it to showcase their language and IT skills. Students did their own research on well-known landmarks as well as using their prior knowledge to include in their VR worlds. This has enabled them to learn factual historical information about different Italian landmarks and has also improved their vocabulary on directional language.… Students enjoyed recording their voices for the sound markers (that were embedded in the 360° scenes) and some students also researched how to pronounce particular words. They became independent workers as most of the time they problem solved on their own trying different strategies to see if they worked or didn’t. This displayed determination and commitment to successfully complete their (virtual worlds).”

Throughout the research, teachers learnt about the potential of immersive storytelling for language learning and students learnt about this too, guided by a mix of instructional strategies and creative processes. Instructional strategies included explicit teaching, scaffolding of student independent research and student production of different types of interactive media in Italian and English to be embedded in the scenes of their virtual Italian tour. After students had created several interconnected 360° scenes, teachers encouraged them to make audio files of themselves (sometimes with peers) orally using the directional language central to the curriculum. These voice recordings were then embedded in appropriate places in 360° scenes along with other media students had sourced or created such as photo and text information pop-ups providing historical or cultural facts related to the scene.

Students exhibited joy when experiencing their 360° creations through a VR headset, as the teachers explain:

“Most students reacted (to the immersive experience) with expressions such as ‘This is amazing’, ‘This is so cool!’. They were actually able to experience firsthand by being engaged in their virtual world. … (T)hey were able to interact more with the world they created using the headsets because for them it felt like they were in Italy and experiencing the tour around Italy rather than just seeing it on the screen.”

“The students were excited and eager to view their worlds in VR using the headsets. It was fantastic to see their enthusiasm and wonder at being able to view what they had created on a screen using the VRTY platform into what felt like ‘real life’.”

Longitudinal, deep teacher reflection is a key source of data for the VR School Study. Teacher reflections over time provide important insights in to growth in teacher professional learning, student learning and the success of different pedagogical strategies and curriculum planning approaches when using VR real classrooms.

Cover picture: Our last real-life team selfie before the Covid pandemic hit – Front: A/Prof Erica Southgate; Rear (Left to Right): Athelstone School language teachers Angelica Cardone and Jo Romeo, and Principal (and language teacher) Gyllian Godfrey. The study was funded through the South Australian Department for Education Innovative Language Program Grant.

Student 360° content creation for learner agency

How do children go about planning the content and experiences of virtual environments that they are creating to demonstrate learning mastery? How do they think about creating virtual environments for their peers to learn in? What are the special learning outcomes related to this? Not much is known about these areas. 

The VR School Study is interested in students as virtual environment content creators. As part of the research, we collected data on the approaches students take when creating their own virtual worlds to demonstrate mastery of learning. This blog reports on interesting findings from the Athelstone School Innovative Languages project where primary (elementary) aged children are building their own 360° virtual tours to demonstrate mastery of the Italian language.

The students are using VRTY, a platform that allows them to plan and create their virtual worlds without needed to code. The platform provides easy-to-use tools with built in tutorials and a fun guide so that students can independently learn to use the platform after a couple of formal training sessions. Previous blog posts describe the VRTY platform and how it is leveraged through the teacher’s curriculum design. The first step, after training, is for students to research and plan their virtual tour. The planning involves storyboarding through VRTY. Students need to:

  1. Locate and choose the 360° photo scenes of Italy that best fit a tour narrative.
  2. Locate cultural and historical images that could be embedded in each scene.
  3. Create their own content to embed in the scene such as text and sound file that draw on the vocabulary mandated and reflect their research on cultural and historical information about Italy.
  4. Design a narrative through storyboarding in VRTY that reflects the story they want to tell and consider whether the tour experience should be linear or non-linear (the image below is of one student’s storyboard).
  5. Create each 360° scene and embed their content into it in an engaging way and place teleporter hotspots in the scenes so those experiencing the tour can move between scenes.  

Fourteen students from a mixed ability class chose to be part of the project with 11 virtual worlds in total created – some students chose to work in pairs. Equal numbers of boys and girls participated. On average student virtual worlds comprised six 360° scenes. Overall, students created 187 pieces of content to embed in scenes in their virtual worlds, including 50 sound files and 137 information markers. The cover image to this blog post is a screen shot from the student tour ‘Journey around Rome’ which shows student created information and sound markers embedded into the scene.

Interestingly, 7 of the 11 worlds were structured according to a non-linear narrative. Non-linear narratives allowed those experiencing the tour to move back and forth between all or most 360° scenes. Students who developed a non-linear narrative storyboard explained that this allowed have the freedom to go back and check out aspects of a scene they might have missed or enjoyed. The image below is of a non-linear narrative storyboard developed in VRTY. The virtual tour was created by a female student who called it ‘Journey around Rome’ and it allowed the traveler to move between a number of historic sites with all sorts of images, text and sound files in English and Italian embedded into them which used the mandated vocabulary and other Italian. Best still the traveler could return to a hotel room and decide which day trip they might take next or they could go back and visit somewhere they had already been.

The storyboard in VRTY for ‘Tour Around Rome’ illustrates the non-linear narrative created by the students with arrow indicating the direction of travel that was possible between 360° scenes.

This sophisticated non-linear narrative approach to constructing a user experience was premised on creating a sense of agency for those experiencing the tour (or other learners). In choosing non-linear narratives some children were tapping into the strength of developing learner agency when designing their virtual worlds. Non-linear narratives were not essential for developing agency but, in many cases, were important to this.

The significance of developing agency in learning cannot be underestimated, as Williams (2017) explains:

“Students with agency develop a self-perception that is based on their abilities as independent thinkers. Our task as educators is not to tell them what to think but to help reveal their thinking by reflecting back to them what we are observing and noticing and naming their acts of problem solving. This feedback builds a metacognitive awareness that reinforces their identities as capable thinkers who are able to construct their own understandings. This mode of learning shifts the locus of power from the teacher to the student, thus setting up students as the experts in their own learning.” (p. 11).

The Athelstone School VR project illustrates how many students themselves understand the significance of agency in creating engaging and efficacious 360° learning environments.

Reference

Williams, P. (2017). Student Agency for Powerful Learning. Knowledge Quest45(4), 8-15.

Training children in 360° content creation

An essential part of scaffolding digital learning when using emerging technology in schools is the provision of developmentally appropriate training on using platforms to meet learning objectives. While there is a lot of talk about generations Y and Z being digital natives, there is great variability in the capability of children and young people in using digital tools for learning, especially when it is comes to creating rather than consuming products.

Throughout the Athelstone School project we have thought carefully about training and supporting primary school aged students (11 – 12years) in using the 360° VRTY platform or content creation.  In 2019 we did a pilot study using VRTY with Year 5 students which helped us hone the training approach. In this phase of the study student training was conducted via teleconference and lasted 40 minutes. VRTY personnel delivered the training, while the teachers and researcher were on hand to assist. This initial training involved a general introduction to using the platform to create virtual worlds in screen mode. We used a ‘sticky note’ exercise to evaluate the training where students writing down their comments on a post-it note about the training so that we could gauge the class’s training experience. This exercise revealed most students enjoyed the training but that some found it challenging as the examples below show.

Some student feedback from the first training exercise.

In 2020, we expanded the training and support approach to include an additional teleconference session on how to save and share virtual content with others in screen and immersive modes. VRTY designed a special handbook for students on this step-by-step process. This handbook was printed out and put on each desk for easy referral. This supplemented to in-platform tutorials and information, providing an option for students who might prefer more conventional reference material to support learning. This in-class training was undertaken via conference which we already had practice with before the necessity of conducting such sessions due to COVID restrictions.

Training in action from the student perspective.

One of the learning objectives for the unit of work was that students could use the on-desk training handbook effectively for assistance to trouble-shoot issues as they arose. The evaluation indicated that all students met this learning objective.

Our experience shows that primary school students may need different training and resource approaches to build confidence and scaffolding them towards competence in using 360° content creation tools. The training response included provision of in-platform instructions and tutorials with a back-up paper-based manual available on student desks. Once confidence was developed, students played and learnt through this process too. Multi-pronged training approaches coupled with practice and play makes perfect.

Training in progress 21st century style.

This post bought to you by A/Prof Erica Southgate, the VRTY team Kingston Lee-Young and Sarah Lee and the teachers of Athelstone School.

Conceptions of VR + signature pedagogies = learning fit

In my recent book, I provide some explanatory frameworks on the pedagogical uses of VR. While much of the public discourse centres around technical differences between types of VR (i.e. the difference between 3 Degree of Freedom [DOF] vs 6 DOF) or whether 360° technology is ‘real’ VR, as an educator I think it is more important to focus on the pedagogical utility of the technology. One way of making pedagogical sense of VR is to conceptualise its different possibilities for learning with explicit connection to the signature pedagogies of disciplines (or school subjects derived from disciplines).

The diagram below (developed for the book) illustrates some key conceptions of VR for learning. VR applications can reflect one or more of these concepts.

When teachers are considering VR they should explore the learning experiences the application offers and how this might fit with the range of instructional strategies commonly used in specific subjects. For example, if you were teaching history you might ask if the software offers a means for transporting students to another place or time because this would fit well with the instructional repertoire usually deployed in the subject area. A core instructional strategy used in a subject is called a ‘signature pedagogy’ (Shulman, 2005). Signature pedagogies are important because they:

implicitly define what counts as knowledge in a field and how things become known…. They define the functions of expertise in a field. (Shulman, 2005, p. 56)

In the case of sparking the imagination through a historical re-creation experience (re-creation being a signature pedagogy of the discipline of history), a time-travel experience would traditionally be facilitated through the instructional use of text, maps, or video. Choosing a time-travel VR experience for history makes good pedagogical sense because it leverages or extends on the signature pedagogy of that particular discipline. Relatedly, this is why VR resonates with the types of place-based pedagogy used in subjects such as geography or in professional training simulations. The technology can be used to take the learner elsewhere and its spatial affordances (properties) fit with the signature pedagogy of geography which is the field trip or professions where situated learning in workplaces (placements) are key (such as clinical health or teacher education).

Let’s look at another example using the diagram. In order to teach science, an educator might want to  provide students with the opportunity to conduct experiments that are too complex or dangerous for a school laboratory – experimentation in labs being a signature pedagogy of the discipline of science. The teacher would therefore investigate if there was a total learning environment in the form of a virtual laboratory available so that experiments could be safely simulated.

A performing arts teacher might find that a virtual studio would be a great addition to the actual studio of the drama classroom because it offered a range of tools for her student to design sets and costumes. VR design studios allow for ease of prototyping (click of the controller for creating, erasing and changing elements) at actual scale and let students easily share design ideas for rapid feedback from the teacher and peers (the book has a case study on how a real teacher did this in a rural school).  In this case, the virtual environment offers tools to support the signature pedagogy of drama teaching which involve facilitating the creative processes through improvisation and iteration.

Finally, some VR applications enable student content creation – this might be through coding (using game engines such as Unreal and Unity for example) or with more accessible ‘no code create’ drag-and-drop software. In this pedagogical conception of VR, students use the technology as a form of immersive media that can tell a learning story. Students create their own worlds and tell their own stories to demonstrate mastery of learning outcomes and to communicate with, and teach, others.

This pedagogical conception of VR as media informs our latest research on using 360° content creation for second language learning at Athelstone primary school. The 360° platform, VRTY, offers ‘no code create’ opportunities for primary school students to create their own ‘surround’ worlds that acts as a foundation to embed other media into (other media includes gaze-activated pop-up text, sound files, photos, videos, gifs and animations). Students are required to demonstrate that they meet learning outcomes, such as oral or written mastery of Italian vocabulary, by creating a 360°world that is enriched with other digital content they have created. Students can link 360° environments together through gaze-activated portals. The many layers of media content creation entail students planning, experimenting, designing, and evaluating the story they want to tell in their virtual worlds. They then share their creations with peers and the teacher for authentic feedback. They are making media-rich narratives to educate others about the Italian language and culture while demonstrating content mastery.

One our key research questions involves understanding how language teachers can leverage their signature pedagogies to take advantage of the learning affordances of 360° media creation in ways that enhance student engagement and learning. Concentrating on the instructional utility of VR in direct relation to the distinctive pedagogies of the subject being taught – its signature pedagogies –  will yield theoretically rich and salient insights for teaching and curriculum design. You are invited to follow our adventure. Stay tuned.

Bought to you by A/Prof Erica Southgate on behalf of the Athelstone School VR School Team

References

Shulman, L. S. (2005). Signature pedagogies in the professions. Daedalus134(3), 52-59.

Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

Using VRTY for language learning

In 2019, VRTY partnered with the Athelstone School and the VR School Study to investigate how primary school students could create 360° environments to enhance language learning, in this case Italian. VRTY was created in 2016 to help make virtual reality more accessible to educators and students. Its founders wanted to improve educational approaches by bringing-to-life 21st Century learning outcomes.

So what is it really? VRTY is a VR and interactive 360° content creation and sharing software platform. It lives in the cloud and its benefit is its ability to help anyone create their own virtual content. There’s no need to code because the platform provides its own easy-to-use tools to let the imagination run free, enact design thinking, problem-solve, prototype and create and share feedback with others.

Being cloud based, there are no specific hardware requirements to use the platform; all you need is a computer with Google or safari browsers and an internet connection. To share a newly created project, it can be shared via a QR code or unique web address (URL). When viewing a project, it can be viewed in 360°mode on any device with a google or safari browser; and to view in VR mode it can be viewed using a mobile and a VR cardboard or mobile headset.

Using VRTY 360° in education has the potential to

  • Increase student engagement;
  • Facilitate higher order thinking and collaboration;
  • Allow students to demonstrate content mastery through the creation of their own media-rich virtual environments;
  • Develop ICT capability area of the National Curriculum integrated across learning areas; and
  • Authentically share content that can be used across the education community.

VRTY provides online training on the platform and an in-class teleconference training session (which is pictured above). Founder, Kingston Lee-Young is enjoying the Athelstone School collaboration, offering the following insights:

“As software developers, we had a vision of creating something that would improve the learning environment and benefit both teachers and students. Partnering with the Athelstone School allows us to see our VRTY platform in action in the hands of Years 5 and 6 students learning Italian. Whilst the involvement of the VR School Study means we are being measured to see if we are truly adding value.”

The photo above shows Kingston and Sarah Lee (VR Producer at VRTY) providing online training to Athelstone School students.

For more information about VRTY or to see some of its shareable content please head to: https://vrty.io

NEW book from the VR School Study

Out of three years of co-research with teachers comes the first book (of many I hope) from the VR School Study. The book, Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (2020 Routledge) provides a brand new pedagogical framework with scaffolds for educators on how to use the technology for deeper learning. Case studies from Callaghan College and Dungog High School are included with a focus on metacognition, collaboration and creativity.

Blog SS

Immerse + Imagine with Michelle Brown

Could you tell me about your professional background Michelle?

I studied Multimedia in the early 2000s and began to incorporate technology into my arts practice, I did a lot of computer design work for musicians, bands and venues back then. About this time I also started working and playing in the music industry. I ended up managing one of Australia’s iconic community radio stations, 4ZZZ in Brisbane, so I didn’t have much time to spend on my art, but I did manage to keep producing work occasionally! Being connected to an industry like music gave me a great bunch of opportunities but I decided to leave 4ZZZ in 2016 to concentrate on a career creating art and producing content.

When did you first get interested in VR and why?

In 2016 while I was finishing up my management role I saw some really cool stuff being created with augmented and virtual reality. I started to look into what I needed to get a VR set up and also started producing AR artwork, I already had the animation and illustration skills plus the tech knowledge so it all just kind of fell into place! The biggest barrier for VR is the expense of the equipment however things are getting cheaper with stand-alone headsets like the Quest available, at the time I had to invest in a PC (I was strictly a mac user for a long time!) and a HTC Vive. Some of the artists I saw producing VR artwork include Liz Edwards, a very cool 3D artist, which got me into a VR art app called Tilt Brush, which I’ve used ever since in my workflow, from music videos to large scale installation work.

How do you currently use VR?

I mainly work with some of the VR art apps/programs like Google’s Tilt Brush, Gravity Sketch and some of the animation programs like Tvori. I paint and create environments and worlds in VR that are the base for music videos, installation work and more. Just like a 3D modelling program, many of the VR apps allow you to export 3D creations that can be used in other apps, like Unity, or traditional film editing software like Premiere Pro.

I also teach workshops in using VR and AR in arts practice, so showing ways that you can integrate illustration and animation with mobile apps and teaching people about the art apps I’ve mentioned.

What are your thoughts on VR and the creative process?

For me I love it, it really cuts down on the amount of time I spend hand illustrating or animating. The same with 3D modelling, it would take me possibly 3 times the amount of time to create something in Cinema4D that I can model quickly in VR as it’s more attune to actual sculpting/painting.

I also feel that VR can create more of an impactful experience, when you are in a headset it’s easy to ignore everything else going on and just concentrate on the narrative or user experience, no social media distractions!

What advice would you give teachers and students who are thinking about using VR for creative projects?

Allow a bit of time for all students to have a play in VR, even if you only have one or two headsets! If you are showing students how to use some of the art programs like Tilt Brush, you need to let them have a little time to get comfortable and creative. But also keep in mind taking breaks if you’re in the headset for more than 30 minutes at a time. I also would recommend giving some direction so that students experimenting with VR art have something to focus on rather than just aimlessly painting swirls, for example; get them to paint a favourite animal or cartoon.

What is unique about creating in VR instead of some other medium?

It’s mainly the speed of which I can get an idea out plus the fact it’s in a three dimensional space, it’s just so much quicker for me to produce a visual story. It’s also a way that I can communicate a theme or an idea that links to a social issue that I can address with my installation work, as it allows for more intimacy and less distraction. Being immersed in a 3D environment by yourself in the headset provides a great opportunity to just focus.

Check out Michelle’s VR art and more on her website https://www.thebadlament.com/

MB

Weaving VR through the science curriculum

In schools, it is vital to align the use of technology to the curriculum. We believe it is important to weave VR through student learning in carefully planned and scaffolded ways. This approach makes VR a powerful learning tool rather than a toy. 

In the VR School Research Study, teachers designed a unit of work on body systems related to the NSW Science (biology) syllabus. Within the unit of work, students continued to experience tradition lab-based science learning and explicit teaching. The teachers developed a formative VR assessment task (described below) that carefully scaffolded independent group learning through collaborative research and creativity.

Students had to carefully organise their group effort as they had limited time to complete the task in VR. The unit of work was conducted over about a 6-week period with around 9 of the 22 in-class learning hours designated for VR (we also experienced technical problems which cut into the VR time and some of this time was spent familiarising students with highly immersive experiences and the equipment). We had limited hardware (3 x networked Oculus Rifts with Alienware laptops on each campus) and did not schedule VR time during the last lesson of the day in case a student became cybersick and would be unable to travel home. At most, 4 groups of 3 students could cycle through VR during each 1 hour lesson.

This meant that students had to be very organised with their research and plan and  construct their prototype models outside of VR so that they could import, collectively evaluate and rework the model during their scheduled VR time. This entailed self-regulated learning.

Here is a video example of an internal tour of a human heart – researched, prototyped and annotated in Minecraft by three Year 9 girls. The detailed annotations and fun facts, correct internal structure with an accurate flow of ‘blood’ through the organ, made it an impressive example of deep learning using VR technology. It was an amazing tour experience, even if it was a bit claustrophobic at first! At the end of the video you can see the heart’s external scale as one of the girl’s avatars flies around it.

The formative assessment task given to students is outlined, in full, below:

Overview of the Living World VR task  

In groups of three students, create a diorama (3D representation) using Minecraft of some part (organ or organ system) of the human body that is responsible for sensing and responding to the environment (internal or external).

This will represent a substantial body of work that thoroughly demonstrates your group’s understanding of the structure and function of the selected organ or organ system. It should aim to both inform and engage other Year 9 students and your teacher.

The final audience will be another group of students, and will be experienced in VR (virtual reality) – Oculus Rift. The look and feel of the presentation will be very different when experienced in VR, compared to playing on a console, tablet or PC/laptop. Groups will be required to do some planning and evaluation of their own diorama in VR before the final audience experiences it, so that it is optimised for VR viewing (immerses the audience).

A 3-minute commentated video will also be created by each group.

Instructions

  1. Form groups of three. Allocate roles for each of the group members. Responsibilities may include research, server hosting, building, annotating (placing signs on parts, labelling structures or functions), team leading, VR video commentating, artistic directing and redstone circuit designing. NOTE: Each team member may have multiple responsibilities and could also share responsibilities.
  2. Choose an organ system (e.g. nervous system, endocrine system) or a smaller part of an organ system (such as an organ or group of organs and tissues).
  3. Research the subject of your group’s diorama thoroughly. Decide which aspects of the research will be included in your diorama.
  4. Create a Minecraft world that will be the server for your group’s project. This should be done in Minecraft Windows 10 Edition or Minecraft Pocket Edition (These are the only versions that will be able to network with the version used by Oculus Rift). Ensure that the version used by your group is the same as the version used by Oculus Rift for VR. Other group members join the world in Multiplayer mode.
  5. Build a diorama. Ensure all structures are labelled and all functions explained (signs would be useful for this purpose). Consider presentation concepts such as linear (visitors must follow a path) and freeform (visitors can go anywhere, maybe even fly). Be innovative and creative. Create new or unexpected features.
  6. VR testing. Each group will have 4 VR sessions, lasting about 15 minutes each:

Session 1 – Become familiar with Minecraft in Oculus Rift. No building. Learn to use the touch controls and get around. Learn how to build.

Session 2 – Test diorama in VR. Evaluate whether it is fit for the intended audience. Decide what will be edited before the next VR session.

Session 3 – Record 3-minute commentated video of diorama. Press ‘Windows Button’ + ‘G’ in game to start recording.

Session 4 – Observe another group’s diorama. Provide warm/cool feedback.

Blog at WordPress.com.

Up ↑